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The pearling instability of bilayer surfactant tubes was recently observed during the collapse of fluid mono-
layers of binary mixtures of Dimyristoylphosphocholine �DMPC�: Palmitoyloleoylphosphoglycerol �POPG�
and Dipalmitoylphosphocholine �DPPC�:POPG surfactants. It can be explained by a Rayleigh-like instability
under the action of the bilayer surface tension. The magnitude of surface tension is dictated by the electrostatic
interaction between charged surfactants. Relaxation of charged molecules is proposed here as an additional
mechanism driving the instability. We find the functional dependence of the electrostatic surface tension and
relaxation energies on the screening length �−1 explicitly. Relaxation lowers the cost of bending a tube into
pearls making the cylindrical tube even more unstable. It is known that for the weak screening case in which
the tube radius is smaller than the screening length of the solution, this effect is important. However, for the
case of strong screening it is negligible. For the experiments mentioned, the situation is marginal. In this case,
we show that the effect of relaxation remains small. It contributes about 20% to the total electrostatic energy.
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I. INTRODUCTION

The formation of surfactant tubes and budding of spheroi-
dal structures are of significant interest in biological pro-
cesses. In particular, such structures constitute intermediates
that are responsible for critical cellular processes such as
material trafficking from the Golgi complex �1�, and fusion
and fission of membranes �2�. As seen during cell locomo-
tion and the formation of Golgi structures, natural surfactant
tubes are prone to transform to a structure resembling a
string of pearls �1�.

Pearling has been induced in tubular phospholipid mem-
branes by adsorption of oil �3� or polymer �4�, on one side of
the membranes. These phenomena were interpreted in terms
of the creation of membrane spontaneous curvature due to
those external stimuli.

We have recently observed pearling in tubular structures
formed during the collapse �two- to three-dimensional tran-
sition� of fluid monolayers of mixed phospholipids �5�. Col-
lapse in binary monolayers containing �6� 70% DPPC and
30% POPG, and 70% DMPC and 30% POPG, lead to the
formation of cylindrical tubes �7�. These tubes, which are
still attached to the monolayer, can be tens of micrometers in
length, with diameters of about 1 �m. A few of these are
wide enough to resolve by fluorescence microscopy. As seen
in Fig. 1, such tubes show instability towards pearling with-
out the introduction of any external gradients that may affect
or induce the spontaneous curvature. Furthermore, the tubes,
being microscopic and submerged in water are likely to be
composed of surfactant bilayers, which are in the liquid

phase at the temperature measured. This suggests that the
tube surface does not have intrinsic spontaneous curvature
itself. Thus, the abovementioned mechanisms of pearling are
questionable for the present case.

The pearling instability can be explained by a simpler
mechanism arising from the surface tension energy of the
surfactant bilayer. As shown by Nelson et al. �8�, this is very
similar to the well-known Rayleigh instability of a cylinder
of fluid �9�. In systems with charged surfactants �POPG in
the above case�, a significant part of surface tension arises
from electrostatic interactions. In other words, the surface
tension can be written as a sum of two contributions:

� = �e + �0. �1�

Here, �e is the contribution from the electrostatic interaction
between charged surfactants and �0 is the contribution from
other interactions such as the van der Waals attraction be-
tween lipid molecules or their hydrophobicity. The magni-
tude of the surface tension can be estimated assuming �, �0,
and �e are of the same order. The magnitude of the last is
��0

2 /�D, where �0 is the surface charge density of the bi-
layer, � is the inverse screening radius of the solution, and
D=80 is the dielectric constant of water. Using relevant ex-
perimental parameters, this electrostatic energy is estimated
to be about 10−3 mN/m. On the other hand, the bending
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FIG. 1. Two fluorescence micrographs taken within a few sec-
onds of each other, showing a surfactant tube undergoing a pearling
instability. The top end of the tube is attached to the
7DMPC:3POPG monolayer from which it grew. The scale bar cor-
responds to 20 �m.
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energy of a surfactant phospholipid bilayer is known �15� to
be about ��30kBT �here, kB is the Boltzmann constant and T
is the temperature of the solution�. For a tube with radius R0
of 1 �m, this translates into an elastic �bending� energy of
about � /R0

2�10−4 mN/m per unit area. Thus, the elastic en-
ergy is more or less negligible in comparison to surface ten-
sion energy. In other words, an instability similar to the Ray-
leigh instability of a liquid cylinder must be present for
micrometers-sized tubes. For the case of a liquid cylinder,
this instability leads to the breaking up of the cylinder into
small droplets. However, for a surfactant tube, the breaking
process is improbable because all surface tension energies
involved are far below the rupture tensile stress �about
1 mN/m� of the lipid bilayer. The pearled structure is obvi-
ously the most likely candidate for the final structure of this
instability.

In the current work, we propose an additional electrostatic
mechanism of pearling, namely, charge relaxation. This is an
extra degree of freedom in binary mixtures. This relaxation is
similar to that observed in another well known electrostatics-
induced pearling instability, namely, the pearls-on-string
structure of polyelectrolyte in poor solvent or of polyam-
pholytes �10�. The physics underlying these instabilities are
however different. Even though both are induced by electro-
statics, in surface tension induced pearling, the characteristic
size of pearls is determined kinetically. On the other hand,
the pearl size and period of polyelectrolytes is determined
thermodynamically by the balance between electrostatic
force and nonelectrostatic force �entropic or solvent-
monomers interactions�. This force balance leads to the
strong redistribution of charged molecules �strong charge re-
laxation� in the system to lower its overall free energy, which
is obviously not needed in the case of Rayleigh instability.
One expects charge relaxation to be the driving force of
pearling when screening is weak such that the Debye screen-
ing length ��−1� is larger than the pearl size. On the other
hand, when the screening is strong ��−1 is smaller than the
pearl size�, electrostatic interactions become short range and
the instability therefore of the dynamical Rayleigh type.

In the experimental system of Fig. 1, deionized water is
used. In this case, the screening radius of the system is com-
parable to the tube radius �about 1 �m�. Thus, the situation
is marginal, and it is not clear whether or not the relaxation
of charged surfactants still plays a significant role in the
pearling instability. We address this question by calculating
explicitly the gain in the electrostatic energy of the system
when the charged molecules of the bilayer redistribute them-
selves during the pearling transition. We show that in this
marginal case in which the screening radius is equal to or
smaller than the tube radius, the charge relaxation remains
small. The energy gain due to this effect contributes roughly
20% to the total electrostatic energy. For smaller screening
radius, the ratio between these two energies decreases very
quickly �as fourth power in the ratio between the screening
length and the pearl size�.

This paper is organized as follows. In Sec. II, using linear
analysis, we briefly calculate changes in the surface tension
and bending energies when a cylinder deforms into a string
of pearls. In Sec. III, we calculate the change in the electro-
static energy under this deformation and separate the contri-

bution due to the relaxation of charged molecules. The latter
is always negative. This gives an additional gain in the en-
ergy of deformation, making the tube even more unstable. In
Sec. IV, we discuss the relative importance of charge relax-
ation effect as well as various approximations involved.

II. ELASTIC ENERGY

Even though the elastic �surface tension and bending� en-
ergy changes when a cylinder undergoes pearling deforma-
tion has been calculated �11,12� before, we briefly repeat the
calculation here in order to introduce the notations and to
simplify their comparison with electrostatic energy in later
sections.

Let us start with a model elastic free energy describing the
cylindrical tubes. Denoting the bilayer tube length L, area S,
and volume V, our starting free energy is the sum of the
surface tension energy, the bending energy, and an osmotic
pressure energy:

E = Es + Eb + Eo = �� dS +� dS�2�H2 + �̄K� + �p� dV ,

�2�

where � and �̄ are the bending rigidity and the Gaussian
bending rigidity of the bilayer, respectively, H and K are the
mean and Gaussian curvature of the tube surface, respec-
tively, and �p is an osmotic pressure difference between the
inner and outer regions of the tube. In the above model, the
osmotic pressure term is somewhat artificial. This term is
needed to make the cylindrical shape the minimum of the
energy for certain range of the parameters �, �, and �p �be-
cause the growth of the tubes is slow in experiments, we
consider the tubes are in �quasi-�equilibrium and their shapes
are determined by the minimum of the free energy�. Without
this term, a spherical vesicle will always be the shape that
minimizes the free energy �Eq. �2��. This osmotic pressure
term was also used by the authors of Ref. �12� to study
instability of cylindrical vesicles. A second choice for the
model energy is to replace the osmotic pressure term in Eq.
�2� by a line tension term, which has been used by the au-
thors of Ref. �11� to study coiling instability in multilamellar
tubes. Each of these models incorporate different physics in
stabilizing the cylindrical tube. The choice of one model over
the other is not important in this paper because we do not
allow either the volume or the length of the cylinder to
change in our subsequent analysis of the cylinder instability.
In the free energy �Eq. �2��, the surface tension and the os-
motic pressure are actually Lagrangian multipliers that en-
force the restrictions of area and volume conservation of the
surfactant tube.

Within linear analysis, to investigate the change in the
energy of a tube undergoing a pearling instability, let us
slightly deform the cylinder radially with a relative ampli-
tude, 	
1, and a wave vector k �see Fig. 2�. As a result, the
radius of the new tube varies along its axis according to

R�z� = R̄�1 + 	 cos�kz�� . �3�

Due to the small permeability of water through the bilayer
surface, in our model, we require that the tube volume does
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not change under deformation. This makes the average ra-

dius R̄ of the new tube different from the original radius R0.
This new radius can be easily calculated. The volume per
unit length of the new tube is

V =
k

2�
�

−�/k

�/k

dz�
0

R�z�

2�r dr = �R̄2�1 + 	2/2� . �4�

The condition of volume conservation then leads to the
simple relation

R̄ = R0/�1 + 	2/2 � R0�1 − 	2/4� . �5�

Let us calculate the change in the surface tension energy
of the tube. The element of the area of the new tube is

dS�z,�� = dz d� R�z��1 + R��z�2

= dz d� R̄�1 + 	 cos�kz��

��1 + �	kR̄ sin�kz��2, �6�

where R��z��dR /dz. The area of the deformed tube per unit
length is then

A =
k

2�
�

−�/k

�/k �
0

2�

dS�z,��

= 2�R0
E�− �kR0�2	2/�1 + 	2/2��

��/2��1 + 	2/2

� 2�R0	1 −
1 − �kR0�2

4
	2
, for 	 
 1, �7�

where E is the complete elliptic integral of the second kind.
The change in surface tension energy per unit length is easily
calculated to be

Es = ��A − 2�R0� �
��R0

2
��kR0�2 − 1�	2. �8�

Let us next calculate the change in the bending energy.
Because the Gaussian curvature energy �̄�dAK is a topologi-
cal invariant and we do not change the topology of the tube,
this energy does not change. For the mean curvature, stan-
dard geometry consideration �13� of the tube surface gives

H =
1 + R��z�2 − R�z�R��z�
2R�z��1 + R��z�2�3/2 . �9�

Substituting Eq. �9� into the expression for bending energy
�the second term in Eq. �2��, and keeping terms up to second
order in 	, one obtains for the bending energy change

Eb � 	2 ��

4R0
�3 + 2�kR0�4 − �kR0�2� . �10�

III. ELECTROSTATIC ENERGY AND RELAXATION
OF CHARGED SURFACTANTS

Let us now proceed to calculate the electrostatic energy
change in the system under pearling deformation. We use the
standard Debye-Hückel �DH� approximation to describe in-
teractions between the charged surfactant molecules. In this
approximation, the only role of free ions in solution is to
screen the Coulomb potential of a charged surfactant. In
other words, the electrostatic potential due to a charged sur-
factant molecule at a distance r from it is

VDH�r� = e exp�− �r�/Dr , �11�

where e is the charge of one surfactant molecule �without
loss of generality, we assume the charge of the surfactant is
positive, D=80 is the dielectric constant of water�, and � is
the inverse Debye-Hückel screening radius. If the concentra-
tion of monovalent ions in water solution is c0, � is given by

� = �8�c0e2/DkBT . �12�

The deformation of the tube also leads to the redistribu-
tion of charged molecules �or charge relaxation�. The degree
of charge relaxation depends on the specific system. In this
section, for simplicity we assume the relaxation of charged
surfactant happens instantly and the distribution of surface
charge is the equilibrium distribution with respect to a given
shape of the tube. We return to this assumption in detail in
the next section.

To find the equilibrium charge distribution ��z�, which in
turn enables us to calculate the change in the electrostatic
energy, one needs to solve the DH equation for the electro-
static potential V�r� in the system

�2V�r� = �2V�r� �13�

self-consistently with the boundary condition that the electric
field at the tube surface is 2���z� and the surface charge is at
a constant potential. In this paper, we use a simpler approach.
Namely, we use a variational approach to calculate the elec-
trostatic energy. Assuming the following ansatz for the
charge distribution of the deformed tube,

��z� = �̄�1 + x cos�kz�� , �14�

we optimize the electrostatic energy of the tube with respect
to the variational parameter x. As we shall see later, x is
proportional to 	. This, coupled with the fact that for small
deformation the response of the system is linear, the charge
distribution obtained using variational approach is actually
the true charge density of the system up to the second order
in 	.

The conservation of the total charge of the tube,

�02�R0 =
k

2�
�

−�/k

�/k �
0

2�

dS�z,����z� , �15�

immediately gives for the average charge density �̄:

FIG. 2. �Color online� A cylindrical tube is deformed radially
with wave vector k.
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�̄ � �0	1 +
1 − �kR0�2

4
	2 −

x	

2

 . �16�

The electrostatic energy of the tube with surface charge
density �Eq. �14�� is

Ee =
1

2
� dS�z1,�1�dS�z2,�2���z1���z2�

� VDH�d�z1,z2,�1,�2�� , �17�

where the distance d�z1 ,z2 ,�1 ,�2� between the two points
�z1 ,�1� and �z2 ,�2� on the tube surface is

d2�z1,z2,�1,�2� = �z1 − z2�2 + R2�z1� + R2�z2�

− 2R�z1�R�z2�cos��1 − �2� . �18�

Substituting Eqs. �6�, �11�, �14�, �16�, and �18� into Eq.
�17�, and expanding the integrand to second order in 	 �x and
	 are of the same order of smallness�, one obtains the fol-
lowing expression for the electrostatic energy per unit length
of the tube after integration:

Ee �
2��0

2R0
2

D
�a0 + 	2a + 	bx + cx2� , �19�

where the coefficients a0, a, b, and c are

a0 = 2�I0��R0�K0��R0� ,

c = �I0���2 + k2R0�K0���2 + k2R0� ,

a = c + �R0
2

4

�2

�R0
2 +

3R0

4

�

�R0
�a0

2
+ c

+
���R0

4
G13

21��2R0
2�1

1

2
�,

1

2
,
− 1

2
�

−
���k2 + �2�R0

4
G13

21��k2 + �2�R0
2�1

1

2
�,

1

2
,
− 1

2
�

+
���R0

2
G13

21��2R0
2�0

− 1

2
�,

1

2
,
− 1

2
�

−
���k2 + �2�R0

2
G13

21��k2 + �2�R0
2�0

− 1

2
�,

1

2
,
− 1

2
�

b = 2c + R0
�

�R0
�a0

2
+ c , �20�

I0 and K0 are the modified Bessel functions of zeroth order,
and

Gpq
mn�x�ar�

bs


is the Meijer’s G-function �14�.

Minimizing the electrostatic energy �Eq. �19�� with re-
spect to x, one gets for x and the electrostatic energy change
per unit length:

x = − 	b/2c .

Ee = Ee −
2��0

2R0
2

D
a0 = 	22��0

2R0
2

D
	a −

b2

4c

 . �21�

As expected, x is of the same order of smallness as 	. This is
consistent with the starting assumption we use in the expan-
sion �Eq. �19��.

If the charged surfactant molecules do not relax to equi-
librium surface distribution, their density remains constant
under the deformation, x=0. From Eq. �19�, the change in
the electrostatic energy in this case is given by

Ee
norel = 	22��0

2R0
2

D
a . �22�

Correspondingly, the energy change due to the relaxation of
charged surfactants comes from the two x-dependent terms
in Eq. �19�:

Ee
rel = − 	22��0

2R0
2

D

b2

4c
. �23�

As one sees from Eq. �20�, c is a positive coefficient. Thus,
the relaxation energy is negative as expected: electrostatic
relaxations lower the cost of deforming a tube into pearls.

IV. DISCUSSION

In this section, we comment on the relative importance of
various energies in the system starting with the electrostatic
energy and the contribution coming from the relaxation of
charged molecules given by Eqs. �21� and �23�. To gain a
better physical insight into these equations, it is instructive to
consider the strong screening case, ��k and �R0�1 and
expand the energies in powers of 1 /�R0. For Ee

norel, the
zeroth order term of the expansion is

Ee
norel�0� � −

�2�0
2�−1R0

2D
��kR0�2 − 1�	2. �24�

It is easy to see that this energy behaves in the same way as
the surface tension energy �Eq. �8��. One, therefore, identifies
the electrostatic contribution to the surface tension of the
surfactant tube:

�e = − ��0
2�−1/D . �25�

It is not surprising to see that, in the absolute value, this
“electrostatic” surface tension is simply the electrostatic en-
ergy per unit area of a flat bilayer at the same charge density.
The negative sign in this expression reflects the fact that
electrostatic repulsions between charged surfactants prefer to
increase the area of the surfactant bilayer. The total surface
tension of the layer, of course, remains positive because of
the nonelectrostatic interaction between surfactant molecules
counterbalance this negative electrostatic contribution.
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The next nonzero term of the expansion of Ee
norel is of

second order in 1/�R0:

Ee
norel�1� � 	2�2�0

2�−1R0

16D

1

��R0�2 � ��2 − 2�kR0�2�

+ �3 + 2�kR0�4 − �kR0�2�� . �26�

The first square bracket term simply adds a small correction,
�e /4��R0�2, to the electrostatic surface tension energy. Com-
paring the second square bracket term with the bending en-
ergy change �Eq. �10��, one immediately identifies this term
as the “electrostatic” bending energy change with the corre-
sponding “electrostatic” bending rigidity given by

�e = ��0
2�−3/4D . �27�

This is positive and, within a constant numerical factor,
agrees with the well-known expression �16� for �e calculated
using other methods. Thus expanding the electrostatic energy
with respect to the tube curvature �1/�R0� in this near flat
limit, one recovers all standard formulae for the “electro-
static” contributions to the elastic parameters �surface ten-
sion and bending rigidity� of the bilayer surface.

Also in this limit, the relaxation energy becomes, to the
lowest order in 1/�R0,

Ee
rel � − 	2��eR0

16

�kR0�4

��R0�4 . �28�

Thus, the relaxation of charged molecules belongs to the
fourth order or higher in the expansion with respect to the
tube curvature. Since the electrostatic surface tension and the
electrostatic bending energy are, correspondingly, the zeroth-
and second-order terms in this expansion �the first-order term
in the expansion vanishes because of the symmetry of the
reference flat surface�, charge relaxation energy gain is para-
metrically small compared to the electrostatic surface tension
and bending energy in this limit and can be ignored. In other
words, in this strong screening limit, the charge density of
the surfactant bilayer can be considered uniform during the
deformation of the tube.

In the opposite limit of very weak screening ��R0
1�,
generally speaking, the electrostatic interaction is long range
and is so large that linear analysis becomes invalid in a very
short time after the instability develops and nonlinear terms
must be included in describing the development of instabil-
ity. This is, however, a very complicated task. This is why in
literature one usually assumes the final �pearl-on-a-string�
structure of instability as given and variationally minimizes
its total energy to find its parameters �size, period�. Never-
theless, for the discussion of the role of charge relaxation
energy, one can still use the result of a linear analysis given
by exact expression �Eq. �21��, which is valid at a very early
time of instability.

Expanding the energies in powers of �R0, for k��, to the
lowest order in �R0, we get

Ee
rel = 	22�2�0

2R0
2

D

I0�kR0��K0�kR0� − kR0K1�kR0��2

K0�kR0�
,

Ee = 	22�2�0
2R0

2

D
� �kR0�2

2
	I0�kR0�K0�kR0� − I1�kR0�K1�kR0�

−
1

2

 +

I0�kR0�
K0�kR0�

kR0K1�kR0�

��K0�kR0� − kR0K1�kR0��� . �29�

Since k��, all length scales are smaller than the screening
radius and electrostatic interactions are not screened. Corre-
spondingly, the energies are independent of �, as shown by
Eqs. �29�.

For k
�, we get to the second lowest order in �R0
and k /�:

Ee
rel = 	22�2�0

2R0
2

D
�ln

�R0

2
+ �2 + �E� +

1

2

k2

�2

−
k2

�2

�E

ln��R0/2��
Ee = 	22�2�0

2R0
2

D
	1 −

k2

�2

�E

ln��R0/2�
 . �30�

Here, �E=0.5772 is the Euler’s constant. For the latter case,
we see that the relaxation energy is larger than the total elec-
trostatic energy by a large logarithmic term, ln��R0 /2�. This
is because, the first expansion term which logarithmically
diverges with �R0→0 in the relaxation energy is exactly
equal in magnitude and opposite in sign to the the first ex-
pansion term for the nonrelaxation energy. As a result, the
total electrostatic energy, contains only the second- and
higher-order expansion terms. Thus, it is parametrically
smaller than either of these components. Obviously, within
linear analysis, the inclusion of the relaxation energy is im-
portant in this limit to get the correct behavior of the elec-
trostatic energy.

For the experimental situation of Fig. 1 and Ref. �5�,
where the screening radius, the tube radius, and the pearl
size are comparable to each other, the screening is marginal.
Therefore, one might ask whether or not charge relaxation
still plays a significant role. To answer this question,
we numerically evaluate the exact �within linear analysis�
expressions Eqs. �22� and �23� for the Ee

norel and Ee
rel,

respectively.
In Fig. 3, we plot the ratio between the energy gained due

to the relaxation of charged molecules and the total electro-
static energy change for different values of �R0. The diver-
gence of this ratio observed at about kR0�1 is because the
total electrostatic energy change goes through zero at this
wave vector. As one can see from this figure, for strong
screening �R0�1, the relaxation energy contributes a small
part of the total electrostatic energy, while for weak screen-
ing �R0�1, it contributes significantly to the total energy.
However, for the marginal case �R0=1, which is more rel-
evant to the experiments, the numerical result shows that the
relaxation of charged molecules contributes about 20%,
which is a small fraction. For smaller screening radius, the
exponent of 4 in Eq. �28� quickly reduces the relaxation en-
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ergy to an irrelevant contribution in the total energy.
Thus, we conclude that in our experimental situation, elec-
trostatic relaxation is a small effect and pearling of tubes is
dominantly due to the surface tension induced Rayleigh
instability.

In reference to the Rayleigh instability, we note that elec-
trostatic surface tension ��e� is a negative quantity �repul-
sions between charged molecules prefer to expand, not to
reduce, the surface area of the tube�. However, for the tube to
be stable, the total surface tension ��� must be positive. This
means the nonelectrostatic surface tension ��0� has to be
positive and greater than the electrostatic one ��e� in magni-
tude. Thus, ��e� is a good measure for estimating the relative
importance of relaxation.

In our experiment, tubes are not observed to pearl in the
presence of monovalent salt. The effect of monovalent salt is
to reduce the magnitude of �e. Based on our assumption that
all surface tensions are of the same order of magnitude, � is
also reduced, leading to the disappearance of pearling.
�Quantitative calculation of the balance between various sur-
face tensions requires detail understanding of the transition
region that connects the tube to the collapsed lipid mono-
layer, which is beyond the scope of this paper.� In this con-
text, we suggest that surface tension induced pearling is elec-
trostatic in origin.

Before concluding, let us come back to the assumption
made in the previous section that the surface charge is al-
ways in equilibrium with a given shape of the tube. To show
that this is a reasonable assumption, let us estimate the
charge relaxation of the surfactant bilayer. This can be done
by viewing the tube as an RC circuit. For one typical wave-
length k−1�R0, the conductance of the circuit is the same as
the conductivity: R−1��0e� with ��109m/sN the mobil-
ity of the surfactant. Because all charges are screened at the
distance �−1, the capacitance of this circuit is of the order
C�R2�. Thus, the relaxation time of this circuit �or of our
surfactant tube� is of the order �RC�−1��0e� /R2�, which is
about 0.1 ms using experimental parameters. This is much
smaller than the growth rate of the pearling instability �in
seconds�. Thus, the surfactant charges, to a good approxima-
tion, can be considered always in equilibrium.

V. CONCLUSION

We have considered the relaxation of charged surfactant
as an additional factor in the pearling instability of surfactant
tubes. It results from an extra degree of freedom available to
binary mixtures. We have calculated this contribution exactly
and compared it to the electrostatic surface tension. This
gives a measure of the relative importance of relaxation and
total surface tension in driving pearling.

For weak screening ��R0
1�, the relaxation energy is
larger than the total electrostatic energy by a logarithmic
factor ln��R0 /2�. For intermediate screening ��R0�1�, it is
about 20% of the total electrostatic energy. For strong
screening ��R0�1�, it decreases as the fourth power of
1 /�R0.

For biological systems such as surfactant tubes, relaxation
can be a relevant factor for submicron length scales and can
rapidly diminished by the addition of monovalent salt. In the
domain of flowing microemulsions, where the tube diameters
can get much smaller, relaxation may well play a more im-
portant role. These are interesting questions for the future.
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FIG. 3. The absolute value of the ratio between the electrostatic
energy gain due to the relaxation of charged molecules to the total
electrostatic energy when a tube deforms into a pearling structure as
a function of the wave vector of deformation, kR0 for �R0=1. Four
different values of �R0=0.1, 0.5, 1.0, and 2.0, are used. Lighter
curve corresponds to higher �R0. The divergencies observed near
kR0�1 arise due to the vanishing of Ee owing to Rayleigh
instability.
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